The Alternate Interior Angles Theorem säger att när två parallella linjer skärs av en transversal, är de resulterande alternativa inre vinklarna kongruenta.
Är alternativa inre vinklar alltid kongruenta?
Det finns bara ett annat par alternativa inre vinklar och det är vinkel 3 och dess motsatta sida mellan de parallella linjerna som är 5. Så alternativa inre vinklar kommer alltid att vara kongruenta och alltid vara på motsatta sidor av denna tvärgående.
Hur bevisar du att alternativa yttre vinklar är kongruenta?
Alternativa yttre vinklar är kongruenta om linjerna som korsas av tvärgående linjer är parallella. Om alternativa yttre vinklar är kongruenta är linjerna parallella. Vid varje korsning ligger motsvarande vinklar på samma ställe.
Är alternativa invändiga vinklar tillägg?
Ja alternativa invändiga vinklar är kompletterande.
Vad är exempel på alternativa interiörvinklar?
Efter satsen för alternativa inre vinklar, om de två gatorna är parallella, och Maple Avenue anses vara tvärgående, då är x och 40° de alternativa inre vinklarna. Därför är båda vinklarna lika. Därför är x=40°. Varje par av alternativa inre vinklar är lika.